Lecture 5

Typical sequences, Typical coder, Arithmetic coding

EE 274: Data Compression - Lecture 1



Typical coder

Typical coder is part of SCL!

https://github.com/kedartatwawadi/stanford_compression_library/blob/main/compressors/
typical_set_coder.py

EE 274: Data Compression - Lecture 1


https://github.com/kedartatwawadi/stanford_compression_library/blob/main/compressors/typical_set_coder.py

Typical coder

Typical set coder performance for Ber(0.11) source

2.0 - eps
—— 0.01

1.8 —_—— 0.2
—&— 100.0

Average codeword bits/symbol

T T T T
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Block size n

EE 274: Data Compression - Lecture 1



Typical coder

Typical set coder performance for Ber(0.01) source

2.00 eps
—— 0,01
—_—— 0.2

—4— 100.0

1.75 1
1.50
1.25 -
Uniform distribution entro .
1.00 e S ——. —

0.75

0.50

Average codeword bits/symbol

0.25

0.00 - T T T T T T T
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Block size n

EE 274: Data Compression - Lecture 1



Typical coder, Huffman-based block coder

e Typical coder -> Not practical! Codebook size too bigasn — 00

o Huffman-based block coder -> Not practical for large alphabets:
decoding treeftable is too big, codebook is too large ...

o Not adaptive, (when probabilities are changing/different per symbol)

EE 274: Data Compression - Lecture 1



Arithmetic coding

1. Operates on the entire input as a single "block". (so if input size is 10,000 -> block
size is 10,000)

2. No explicit need to create a "codebook" for each codeword. A codeword is created
"on the fly" for the input

3. For an input of size n, the overhead of arithmetic coding is ~2/n

4. Very convenient to adapt to changing probabilities!

EE 274: Data Compression - Lecture 1



