Lecture 5

Typical sequences, Typical coder, Arithmetic coding
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Typical coder

Typical coder is part of SCL!

https://github.com/kedartatwawadi/stanford_compression_library/blob/main/compressors/
typical_set_coder.py
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https://github.com/kedartatwawadi/stanford_compression_library/blob/main/compressors/typical_set_coder.py

Typical coder

Typical set coder performance for Ber(0.11) source
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Typical coder

Typical set coder performance for Ber(0.01) source
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Typical coder, Huffman-based block coder

e Typical coder -> Not practical! Codebook size too bigasn — 00

o Huffman-based block coder -> Not practical for large alphabets:
decoding treeftable is too big, codebook is too large ...

o Not adaptive, (when probabilities are changing/different per symbol)
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Arithmetic coding

1. Operates on the entire input as a single "block". (so if input size is 10,000 -> block
size is 10,000)

2. No explicit need to create a "codebook" for each codeword. A codeword is created
"on the fly" for the input

3. For an input of size n, the overhead of arithmetic coding is ~2/n

4. Very convenient to adapt to changing probabilities!
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